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1. Abstract 
Time requirements for the solving of complex large-scale engineering problems can be substantially reduced by using 
parallel computation. Motivated by a computationally demanding biomechanical system identification problem, we 
introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm Algorithm as a 
means of obtaining increased computational throughput. The Particle Swarm requires very few algorithmic parameters to 
define convergence behavior due to its simplicity, and, as a population based optimization method it is a natural candidate 
for concurrent computation. The parallelization of the Particle Swarm Optimization (PSO) algorithm is detailed and its 
performance and characteristics demonstrated for the biomechanical system identification problem as example. 
2. Keywords: parallel computation, particle swarm optimization, biomechanical system identification. 
 
3. Introduction 
The method of Particle Swarm optimization was introduced in 1995 by Kennedy and Eberhart [1] and has been successfully 
applied to several different problems, including the training of neural networks, structural and topology optimization, and 
image recognition. The underlying principle of this stochastic population-based method is that of a number of agents 
coordinating their search patterns in the design space by communicating the locations of promising regions. Each agent i in 
a swarm of p particles, occupies a distinct point xk

i in the design space at time step k, and has a pseudo velocity vk
i and 

inertia wi. At each iteration k of the optimization process particles evaluate their fitness fk
i and adjust velocities according to 

the most promising location found by the swarm pk
g and themselves pk

i. Positions are updated as follows: 
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Regions of high fitness act as attraction basins to which the particles will converge and overshoot. c1 and c2 are cognitive 
and social weights assigned to individual best and the swarm best remembered positions in the design space, and are both 
set at values of 2 to allow for particles to overshoot half of the time. r1 and r2 are uniformly distributed random numbers 
between 0 and 1. The cognitive (individual) and social (swarm) contributions to an individual particle's search direction (2) 
can be visualized as a parallelogram in a 2-D search space (Figure 1). By reducing the particle inertia wi and limiting 
velocities as the search progresses the amount of overshoot can be reduced, thereby forcing the search region to become 
localized. This derivative-free method is an attractive approach to global optimization because of the small amount of 
algorithmic parameters required for its operation, which are the maximum velocity at initialization v0, inertia wi, the rates 
these are reduced at, and values of c1 and c2 (usually set at 2). For our implementation we use a dynamic inertia and 
maximum velocity reduction scheme [2] to obtain a progressively reduced search area. 

Parallel optimization with similar global methods such as Genetic Algorithms (GA's) and Simulated Annealing 
(SA) have been successfully applied to the optimization of complex problems by numerous authors [3,4,5,6]. The PSO 
algorithm is particularly suited to continuous variable problems for which gradient information is not available or very 
expensive to calculate. Although several modifications to the original swarm algorithm have been made to improve 
performance and reliability [7], a parallel version has not previously been implemented. We applied the PSO to a 
biomechanical system identification problem, entailing the reconstruction of a kinematic skeletal model of a human ankle 
joint from non-invasive experimental measurements [8].  To deal with large computational demands of this problem we 
parallelized the algorithm to obtain increased throughput. This paper outlines our approach to obtain a parallel 
implementation of the PSO algorithm and describes its performance for the biomechanical system identification problem.  
 
4. Algorithm parallelization 
Our parallelization approach is as follows: In order to minimize inter-nodal communication, which often forms the 
performance bottleneck on networked machines, we require coarse grain task division. By taking advantage of the fact that 
each particle can function individually with a minimal amount of communication, we decompose the algorithm by assigning 
each particle fitness evaluation to run as a separate process. These processes are then distributed evenly between available 
CPU’s. A master/slave communication model is used to assign fitness evaluations and maintain algorithm synchronization. 
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 For our application the master node is used exclusively for the algorithm operation, and slave nodes perform fitness 
evaluations of design configurations received via the message passing interface protocol (MPI) implementation. 
Communication between nodes/particles operates in a lock step or synchronous fashion, with all information on fitness and 
particle positions being exchanged between master and slave nodes at the end of a swarm movement cycle. 

Figure 1. Cognitive and social search contributions. 
 
The original serial implementation of the particle swarm can be outlined as follows: 

1. Initialize 
(a) Set constants kmax,wi,c1,c2 v0

max. 
(b) Randomly initialize particle positions x0

i ∈ D for i = 1,…,p. 
(c) Randomly initialize particle velocities 0 < v0

i < v0
max for i = 1,…,p. 

(d) Set k = 1, i = 1 
2. Optimize 

(a) Evaluate fitness value fk
i using design space coordinates xi 

(b) If fk
i < fbest

i then fbest
i = fk

i,  pk
i  = xk

i 
(c) If fk

g < fbest
g then fbest

g = fk
g,  pk

g  = xk
i 

(d) If stopping condition is satisfied go to 3. 
(e) Update particle velocity vector vk+1

i using (2). 
(f) Update particle position vector xk+1

i using (1). 
(g) Increment i. If i > p then increment k, set i = 1. 
(h) Go to 2(a). 

3. Report results and terminate 
 

The above represents an improved variant of the original sequential algorithm [7], in which each particle’s fitness evaluation 
is executed sequentially and the best position of the swarm is updated as soon as a particle finds a better position. The 
parallel implementation modifies step 2 of the above algorithm to evaluate all particles in parallel as follows: 
 

2.    Optimize 
(a) Evaluate all fitness values fk

i using parallel processes, using design space coordinates xi for i = 1,…,p. 
(b) Barrier synchronization (wait for all processes to finish). 
(c) If fk

i < fbest
i then fbest

i = fk
i,  pk

i  = xk
i for i = 1,…,p. 

(d) If fk
g < fbest

g then fbest
g = fk

g,  pk
g  = xk

i for i = 1,…,p. 



 

 

(e) If stopping condition is satisfied go to 3. 
(f) Update particle velocity vector vk+1

i using (2). 
(g) Update particle position vector xk+1

i using (1). 
(h) Increment k. 
(i) Go to 2(a). 

 

 
Figure 2. Original and parallelized particle swarm algorithm flow diagrams 

 
The improvement of updating the cognitive fk

i and social fk
g best remembered positions, pk

i and pk
g, after each individual 

particle fitness evaluation is lost to us in the parallel implementation. This modification, which offered improved 
convergence rates, is impossible to duplicate in the parallel PSO implementation because of the barrier synchronization. 
This barrier synchronization stops the algorithm from proceeding to the next step until all of the objective functions have 
been reported to the master node, which is required to maintain algorithm coherence. The parallelization comes at the cost 
of delaying the update of the best swarm position until the entire swarm's fitness evaluations have been performed. The 
effect of this change on algorithm performance was investigated in [7,13], where it was found to be of the order of 30%. 
This may be viewed as one of the overhead costs associated with parallelization. 
 



 

 

Application to system identification problem 
Our large-scale optimization problem entails the system identification of joint angle locations and orientations from a set of 
marker trajectories. This procedure requires data measured by recording the trajectories of a set of markers, which are 
externally attached to the subject’s skin, using a system of digital cameras with multiple viewing angles [8,9]. These 
recordings are processed to obtain trajectory data in a laboratory fixed coordinate system. Models obtained in this manner 
are used in forward or inverse dynamic simulations [5] to quantify the results of certain surgical procedures, or to aid in the 
design of prosthetic devices. 

For the system identification procedure we first need to create a parametric kinematic linkage model (Figure 3) 
with a set of virtual markers, which correspond to actual markers adhered to the subject. This model needs to be able to 
emulate the limb segment movements by exhibiting an appropriate number of degrees of freedom, in our case two revolute 
joints. By optimizing the orientation and location parameters p1-p12 of this model, with the objective of minimizing the 
cumulative sum of square distance errors between the parametric model markers and actual marker trajectories (3,4), we are 
able to recover the original model configuration [11,12].To evaluate the accuracy with which the PSO would be able to 
recover the original joint configuration, a kinematic linkage model with a set of known parameters was used to create a 
synthetic marker trajectory dataset. This dataset was then analyzed in the exact same manner as experimentally measured 
marker trajectories, and the parameter configuration compared to the original.  

The marker distance error minimization with n = 50 trajectory time frames, and m  = 6 markers is formulated as 
follows: 

 
(3) 

 
 

with ∆i,j being the distance between the experimental and analytical position of marker j in time frame i. 
(4) 

 
In order to approximate experimental data more accurately noise was superimposed on the synthetic marker trajectories by 
using a sinusoidal noise model with a random frequency (0 ≤ ω ≤ 25rad/sec), phase (0 ≤ φ ≤ 2π) and amplitude (0 ≤ A ≤ m) 
based on a model by [10]. 

Figure 3. Parametric kinematic linkage model 
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6.  Numerical results 
For the numerical results all optimizations were performed using a swarm of 20 particles on a cluster of 1.3 GHz networked 
personal computers with the Linux operating system. As can be seen from Table 1 the algorithm had little difficulty 
recovering the original parameters from the synthetic data set (with no superimposed noise), with a final cumulative error 
value f in the order of 10-13. This results in the optimum model being recovered with mean angular errors less than or equal 
to 0.045 degrees and mean position errors less than or equal to 0.0077 cm. 
 

Synthetic Synthetic Synthetic data Parameter Upper bound Lower bound 
 solution  data  + noise 

P1 (degrees) 48.66935 -11.633065 18.366935 18.364964 15.1301
P2 (degrees) 30 -30 0 -0.011809 8.0075
P3 (degrees) 70.230969 10.230969 40.230969 40.259663 32.9741
P4 (degrees) 53 -7 23 23.027088 23.12202
P5 (degrees) 72 12 42 42.00208 42.03973
P6 (cm) 6.270881 -6.270881 0 0.00027 -0.3936
P7 (cm) -33.702321 -46.244082 -39.973202 -39.972852 -39.61422
P8 (cm) 6.27088 -6.270881 0 -0.000287 0.75513
P9 (cm) 0 -6.270881 -1 -1.000741 -2.81694
P10 (cm) 15.266215 2.724454 8.995334 8.995874 10.21054
P11 (cm) 10.418424 -2.123338 4.147543 4.147353 3.03367
P12 (cm) 6.888097 -5.653664 0.617217 0.616947 -0.19037

 
Table 1. Recovery of joint orientations and location from synthetic data and synthetic data with noise. 

 
For the synthetic data with noise a mean marker error of 0.514485 was found, which is on the same order as the imposed 
numerical noise. This error corresponds to a mean angular error 3.732191 degrees and a mean position error of 0.923724 cm 
(Table 2). 
 

Synthetic + noise 
Mean marker distance error (cm) 0.514485 ± 0.233956 
Mean angular parameter error (degrees) 3.732191 ± 3.394553 
Mean position parameter error (cm) 0.923724 ± 0.471443 

 
Table 2. Synthetic data + noise recovered model marker errors with standard deviation. 

 
The poor agreement of orientation parameters p1-4 to actual values for the noisy dataset is the result of the induced numerical 
noise. This can be explained by the dependency of angular calculations on marker positions. Because of the proximity of 
markers to each other, even relatively small mean amplitude numerical noise can result in large fluctuations in calculated 
limb angles. This is also observed in the mean angular parameter error in Table 2. 

Performance results using our biomechanical system identification example problem are presented in Figure 4. A 
study was performed to investigate the effect of using an increasing amount of computational nodes to solve a fixed task 
size of 1000 fitness evaluations. The algorithm yields a significant increase in throughput as the number of nodes is 
increased. This increase is not linear however, due to increasing network communication overhead between nodes at higher 
number of processors.  Using a varying population of particles has been shown to have little impact on cost [7], but the 
PSO's performance in terms of reliability may suffer at lower numbers of particles. 



 

 

 
Figure 4. Optimization analysis speedup with an increasing amount of computational nodes (1000 fitness evaluations). 

 
7.  Conclusions 
In this study, we presented a parallelization of the particle swarm optimization algorithm and applied it to system 
identification of kinematic skeletal models from marker trajectory data. The parallelization is based on master/slave 
processor model, and it requires a synchronization of the algorithm that may lead to small increase in required function 
evaluations. However, this small loss is recovered with a small number of processors. . By using a parallel computation 
approach the time required to solve the system identification problem was reduced substantially, proving that optimization 
using a parallel particle swarm algorithm on a cluster of processors is a viable and worthwhile option to solve large-scale 
optimization problems exhibiting multiple local minima. The method was demonstrated by accurately recovering the 
parameters on an ankle model from synthetically generated data with superimposed noise.  
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